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1 ; (Mixed) Integer Programming (IP)

Min  ¢'X
Subject to: Ay _p

r<x<u
X =(X;,Xc)
X, € Z" (integer values)

X. € Q" (rational values)

« Can also have inequalities in either direction (slack variables):
a'x<b=a' x+s=Db,s>0

o IP (easily) expresses any NP-complete problem
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Linear programming (LP) relaxation of an IP

Min CTX

Subject to:
Ax =D
r<x<u
X = (X| ’Xc)

)1/6/2”/ (integer values)

X. € Q" (rational values)

e LP can be solved efficiently (in theory and practice)
» LP optimal gives lower bound
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DOE/Science MIP Applications (Small Sample)

Defense program applications:
 Logistics
- Capacity planning, scheduling, workforce planning, constrained vehicle
routing, fleet planning
« Site security
e Tools for high-performance computing (scheduling, node allocation, domain
decomposition, meshing)
Science
 Bioinformatics: protein structure prediction/comparison
» Wireless sensor management
» New applications (with Ali Pinar, LBNL)
- Scheduling telescope time (eg. For supernovae observations)
- Groundwater monitoring
- Analysis of particle behaviors in supercolliders
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' Simple Example: Scheduling telescope

e A number of projects are sharing a telescope
- Looking for different types of objects
- Sky regions observed multiple times
- Quality of a pair of observations depends on time gap

* X;; = 1 if observe region i on night j
* Z;;p = 1 1f project p uses an observation of region i on nights j and k
* Vg, = Value to project p for observing with a gap of g

e n = # of observations/night

e V, = minimum value for project p
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!; Simple example: Scheduling telescope

max ka_j,pzijkp
ikp

st

Zij X; <n maximum observations/night
Ziip < Xy VLK, ], P

Ziip < ijVi,k, I, p

D Vi oZio =V, ¥p miminum quality

ijk

Zz.jkp <1Vp, overlap sets F (no overlaping intervals)

i
(i,j,k) eF

. .
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' Solution Options for Integer Programming

» Commercial codes (ILOG’s cplex)

- Good and getting better
- Expensive

- Serial (or modest SMP)
 Free serial codes (ABACUS, MINTO, BCP)
e Modest-level parallel codes (Symphony)
 Grid parallelism (FATCOP)
 In development: ALPS/BiCePs/BLIS

e Massive parallelism: PICO (Parallel Integer and Combinatorial Optimizer)

Note: Parallel B&B for simple bounding: PUBB, BoB/BOB++, PPBB-lib, Mallba,
Zram
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Solving Integer Programs: Branch and Bound

Root Problem = original

fathomed infeasible

e Lower bound: LP relaxation
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}PIC.:O Parallel IP Solver: Two Phases

 Parallel subproblem phase
- There are plenty of subproblems compared to # processors
e Ramp up (eg. 1 subproblem, 10000 processors)
- Parallel processing of single problem
e Gradients
e Cuts
 LP bounds
- Incumbent heuristics (looking for a good feasible solution)

. -
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Value of a Good Feasible Solution Found Early

Root Problem = original

fathomed infeasible

e Faster pruning
« Having something to say if the computation stops early
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General-Purpose Incumbent Heurstics

« Randomized rounding

« Feasibility pump

» Nediak-Eckstein

 Fractional Decomposition Tree
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' Randomized Rounding

Binary decision variables. LP relaxation x*
« Simplest form: treat LP relaxation 0 < x* < 1 probability
 Select each x* independently with probability x*

 For parallel IP, in early computation, many processors can do this
independently.

» Resulting vector x is
- Integer by construction
- Almost certainly infeasible for linear constraints Ax = b.
» Exception: covering problems [Raghavan, Thompson]
» Fast way to find something when (almost) everything is feasible
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!; Feasibility Pump (Fischetti, Glover, Lodi)

Basic algorithm:

1. Solve LP to obtain x*

2. Round (arithmetically) x* to X

3. While X is not feasible obtain new x* from this LP:

min Dy,

S.t

Vi = X =X
Yi 2 X =X
Ax=Db

and round x to X again
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' Feasibility Pump Improvements

value of first feasible solution
optimal (or best known)

e Gap is

e Improvement is relative to initial feasibility pump
e Tested with problems from miplib2003

e Round x* multiple times, take best (most feasible) of k trials
- 23.7% gap improvement for k = 30
- Running time increase factor of k, but fully parallelizable

e Iterated local search: perturb and redo the feasibility pump
- For k=30 iterations, gap improvement of 31.2%

- Runtime increase of k, not parallelizable individually, but can
do multiple independent iterated searches.

e Good idea to round randomly for x* components near .5
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.g' Eckstein-Nediak Heuristic

« Parallelizable, General 0-1 MIPs

Uses a merit function y(x)

« motivated by Lgkkentangen and Glover, 1998
« y(X) = 0 if vector x is integer feasible

e y(X) > 0 if an integer variable is fractional

e y(X) is differentiable and strictly concave

- Important properties, not enforced by Lokkentangen and Glover

Goals:

e Reduce y(x) to 0

e Obey linear constraints (Ax < b) and variable bounds
« Minimize increase in MIP objective (c'x)
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j; Parallel MIP Heuristic Merit Function

We define a separate merit function ¢;(x;) for each binary variable X;
Same properties:

 95(0) = ¢;(1) = 0
-¢j(x)>0for0<x<1
« Differentiable, strictly convex

Total merit is the sum of the individual merits (retains properties)

W(X):Z¢j(xj)

jel
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‘; Merit Function for a variable X;

L]
Y L]
\ .

Specifically, for
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a < (01)

¢,(x)=1-1

C! quadratic spline defined by

®(0) = 0
p(a) = 1
¢'(a) =0
o(1) =0

o = 0.75 shown

( 2
X—a
( j forx <«

a

K
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| Nediak-Eckstein MIP heuristic

New objective function Vy(x*) + wc, where

e X* is the current point (such as LP optimal)

e ¢ is the original IP objective function

e W is a weighting factor (IP objective vs. integrality)
This is the Sum/Frank-Wolfe approach

Use normal LP simplex pivots to improve the new objective
« Adjust the objective at each step (for new x¥)
e Provably finds a local optimum (via concavity)

If the local optimum x has y(x) > 0, can add Gomory cuts and
continue.
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| Nediak-Eckstein MIP Heuristic

e Processors can use different merit functions
- Random values of o for each variable
e Processors can also fix one fractional variable

- For example, if binary variable x; is .4. Set to 0 or 1 in
heuristic.
« Combinations of the two types of variation

- Fixing variables that have a good history of improving
integrality
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P-Relaxation-Based Approximation for IP

« Compute LP relaxation (lower bound).
« Common technique:

- Use structural information from LP solution to find feasible IP
solution (use parallelism if possible)

- Bound quality using LP bound
« Integrality gap = max(IP (1))/(LP(l))
- Taken over all instances | (settings of class parameters: c,b)
- Integrality gap is unbounded (infinite) if
e LP(I) =0o0r
e P is infeasible when LP isn’t
 This technique cannot prove anything better than integrality gap
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Finding an Approximate solution: Convex Decomposition

x* = feasible solution to the LP with cutting planes

Find feasible integer solutions
Sy.S,++, S, such that ) AS, < px*
Convex combination: 0 < 4. <1; Zﬁi 1

 Implies one of the S; has cost
at most p times the LP optimal

LP

p* LP

gradient

/

"~ Integer polytope
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j; Key Theorem (Carr, Vempala)

« Recall integrality gap = Value of best integer solution
value of LP relaxation

e Let x* be the optimal LP solution to the LP relaxation for an IP.
There exists a convex decomposition dominated by px* if and only if
the integrality gap is p for finite p.

S,.S,-++, S, such that X AS, < px*
0<A<L D A =1
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= Fractional Decomposition Tree - Overview

 Previous decomposition results were problem-specific
The FDT method applies decomposition to any integer program.
» Will succeed if the problem class has finite integrality gap!
- Success = find feasible solution
- No quality guarantee
« Grows a tree-like branch and bound (B&B) except

- Preserves structure of LP relaxation (vs. preserving objective
function in B&B)

- Limits the tree to polynomial size (vs. exponential for B&B)
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!; FDTs for O-1 IPs

x, € {0,1}
X, X, € {0,1}

O O O O O Integer solutions

e Order the variables that are fractional in the LP optimal x*
At each level of the tree, one more variable is forced integral

« Use LP to pack the children into the parent optimally
- Preserve structure of the solution
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j; LP to create the children

« To create children of the root from x* (LPC): max A, + 4,
st Ay >DbA,
Ay >DbA,
0<y’< ], el
0<y'< Aol

« Children of the root have solutions: v, =0;y; =4
0 1
x* =Y andx* =L yo+y<x

& 4 A2, >0

« Solutions are feasible, have first variable integral, and decompose
x* with value 1 .

T Ao+ A
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!; LPC is feasible Iin general

e For finite integrality gap, there exists

S,.S,++, S, such that ) AS, < px *

e Let S® be the members of S; with x,=1
S{ be the members of S; with x,=0

Zils(l) < X *

les(o) < X *
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j; Pruning the tree

e Let n be the number of fractional variables in x*

o If any level of the tree has more than n nodes, we prune the tree,
keeping only the best n partially integral solutions.

 This LP (LPP) picks the n survivors that best pack into the root
solution x* and calculates the convex combination parameters.

» Has only n nonzeros because there are only n constraints
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| FDT heuristic

» Some of the decompositions will have only one child.
« If any of the x!are integral, no further decomposition. They can
participate in LPP (travel to next “level” logically).
e If this were to run n levels, all leaves would be feasible integral
solutions.
e Running to the end level could be very expensive
- Combine this with randomized rounding or other heuristics
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' Parallelizing FDT

 Child decompositions on each level are independent

 Alternatively, can “dive” through the FDT

- Do a child decomposition

- Pick a single child

- Travel a single path to a leaf

- This can fail even when the full computation would not
» Each processor can dive independently
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| Final remarks

« For important applications, customization is best

- PICO provides tools for each addition of custom incumbent
heuristics

- If using ampl modeling language, ampl variables are available
directly within PICO

» Expect FDT will be the sledgehammer for when nothing else works.

» Key challenge: managing parallel heuristics
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